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Abstract-The onset of natural convection in a vertically oriented, finite thin slab of saturated porous 
material is considered. The slab is embedded between two impermeable conducting blocks of finite 
dimension. A vertical temperature difference is imposed between the upper and lower horizontal surfaces 
of the slab and blocks, and a linear temperature distribution is imposed on the outer vertical surfaces of 
the blocks. This configuration is used to mode1 convection in a saturated, fractured rock zone like that 
associated with faulting. A linear stability analysis is developed for both convection in the slab and 
conduction in the block. The objective of the study is to obtain the critical Rayleigh number and mode of 
convection in the slab. When the block and the slab widths are both small compared to the other two 
dimensions one finds a large number of tall, narrow, three-dimensional cells. In contrast, a block of 
relatively large width promotes the formation of longer wavelength, weakly three-dimensional cells in the 
slab at a much lower Rayleigh number. The difference is related to the character of the temperature 

distribution in the solid block. 

1. INTRODUCTION 

THE SUBJECT of buoyancy induced convection in satu- 
rated porous media has been widely studied in the last 
three decades, motivated by engineering technology 
and geophysical problems as well as basic scientific 
interest. Early attempts emphasize convection pro- 
cesses in infinite and confined porous material 
between horizontal surfaces with an imposed tem- 
perature difference (e.g. refs. [l, 21). The sidewalls are 
assumed to be insulated. Except for vertical columnar 
geometries, the critical Rayleigh number for onset of 
convection in such systems is usually R, = 47~’ or in 
the vicinity of that value. 

In many practical situations, horizontal heat ex- 
change through vertical confining boundaries may be 
as important as the heat transfered vertically through 
the porous media. Then the traditional insulated 
boundary condition is inappropriate. This fact has 
inspired several investigators to develop an under- 
standing of the effects of sidewall heat transfer on 
the character of convection in porous media, and to 
determine the conditions necessary for the onset of 
convection and the mode configurations. A few exam- 
ples of these analyses are given by Lowell and Shyu 
[3], Murphy [4], Kassoy and Cotte [5] and Weidman 
and Kassoy [6]. In the most recent studies [5, 61, the 
onset of natural convection in a vertically oriented, 
thin, finite slab of saturated porous media is 
considered. Heat flow is allowed through the broad 
vertical sidewalls but not through the narrow 
endwalls. A linear stability analysis is carried out and 
results are obtained from an asymptotic evaluation of 
the exact stability criteria in the limit of small gap 
width E + 0, where E is the ratio of the narrow hori- 

zontal dimension of the slab to its height. The analysis 
shows that when the appropriately defined Biot num- 
ber is O(l), including the case B + co, the critical 
Rayleigh number R, = U(E- ‘). The convection mode 
consists of tightly-packed three-dimensional cells with 
a wave number TV, = O(E-‘I*). Only when the Biot 
number is sufficiently small, O(E*), are the classical 
results for adiabatic sidewalls, R, = 47c*, c(, = A, 
approached. One distinct advantage of the analyses 
in refs. [5, 61 is that, unlike earlier efforts, the math- 
ematical formulation as well as the solutions are based 
on a fully three-dimensional model, in which an eigen- 
function describes the temperature variation in the 
cross-slab direction. Such a treatment ensures a degree 
of resolution not possible with Murphy’s two-dimen- 
sional analysis [4]. The results in refs. [5, 61 agree with 
Murphy’s qualitatively in the sense that both show 
the strong stabilizing effect of sidewall heat transfer. 

In the work by Weidman and Kassoy [6], one 
should notice that the thermal conditions on the side- 
walls are controlled by a single parameter, the Biot 
number, which arises from a boundary condition 
relating the temperature to the temperature gradient 
on the slab wall. In this sense the thermal response of 
the material external to the slab is ignored. In reality, 
the porous slab is usually found embedded in a larger 
environment with a characteristic heat transfer that 
produces a strong feedback on the convection in the 
slab. One such example is a fault zone of fractured 
rock embedded in impermeable material which is pre- 
sumed to extend far away in the horizontal direction. 
The purpose of this study is to describe the thermal 
interactions between the environment and the porous 
slab and their influence on criticality behavior. We 
consider a slab embedded between two impermeable 

1331 



1332 M. WANG, D. R. KASSOY and P. D. WEIDMAN 

NOMENCLATURE 

L 
specific heat of fluid 
block width 

d scaled block width, D/E 
f(y, tl, i?, E) cross-slab eigenfunction 

fbcv) 
9 

HI 
H2 
HI,, 
k 
K 

I 
L 

P 
P 

R 

rT 
ff 
T 

Tll 
TI 
u 
u 

V 

W 

cross-block function 
gravitational acceleration 
slab length 
slab width 
transitional slab length 
permeability of the porous medium 
ratio of block to liquid saturated 
porous matrix thermal conducti- 
vities, &,jZ, 
horizontal wavelength, 27r/a 
slab height 
fluid pressure 
characteristic pressure defined by 
equation (4h) 
Rayleigh number defined in equation 

(4f) 
scaled Rayleigh number, E*R 
scaled Rayleigh number, ER 
temperature 
temperature at the upper surface 
temperature at the lower surface 
fluid velocity in the x-direction 
characteristic velocity defined by 
equation (4g) 
fluid velocity in the y-direction 
fluid velocity in the z-direction 

(x, y) horizontal coordinates 

i scaled horizontal coordinate, Y/E 

YP penetration depth of temperature 
disturbance in the block 

Z vertical coordinate. 

Greek symbols 
u horizontal wave number 

; 

scaled horizontal wave number, s’/% 
volume expansion coefficient of the 
fluid 

E dimensionless slab width, H;/ L 
9 disturbance temperature 
1 thermal conductivity 
A quantity defined by equation (A3) 
V kinematic viscosity of the fluid 

PO density of the fluid evaluated at the 
upper surface temperature To 

7 overheat ratio, (T’, - To)/ To. 

Subscripts 
b conducting block 
C critical value 
m fluid-saturated porous matrix 
(x, y, z) (x, y, z)-derivative. 

Superscripts 

( )’ dimensional quantity 
* terms in the R, expansions after 

expanding the wave number. 

conducting blocks. It will be shown that the critical 
Rayleigh number and the modal configuration of con- 
vection differ fundamentally from those found in pre- 
vious studies [5, 61 where direct thermal interaction 
with the environment is not admitted. 

2. PROBLEM FORMULATION AND SOLUTION 

We consider the onset of buoyancy induced con- 
vection in a slab embedded between two impermeable 
conducting blocks as shown in Fig. 1. The dimensions 
of the slab are specified by height L’, length Hi, and 
width Hi. Two adjacent blocks with the same lengths 
and heights as the slab extend a distance D’ hori- 
zontally away from opposite sides of the slab. The 
upper and lower surfaces of this sandwiched system 
are maintained at temperatures Th and T;, respec- 
tively, such that AT’ = T; - Tb > 0. The front and 
rear surfaces including the two endwalls of the slab, 
on the other hand, are assumed to be insulated. It is 
also assumed that the temperature increases linearly with 
depth at the far side of each block (cf. Fig. l), namely 

FIG. 1. Geometry and coordinates for the embedded vertical 
slab of saturated porous media. 

T’ = Th-AT’z’/L’. In addition, the six walls of the 
slab are impermeable. 

2.1. Linear stability analysis for the slab 
The non-dimensional equations for conservation of 

mass, momentum and energy in the porous slab are 
given by [5] 

u,+v,+w, = 0 (1) 
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T-l 
24= -px, v== -P),, w== -Pzf-- 

z (2a-c) 

RfuTx+vT,+wT,]= T,,+T;,+T,. (3) 

The dimensionless variables are defined by 

(x,y,z) =w, (u,v,w) = v (&,b) 

T _ ZII. 
T&’ 

P = pL+pb,9’z’ 
P’ 

@c, 4 

T;-T;, 
t=----, R= 

T;, 

where c’ is the specific heat of the fluid, &, the thermal 
conductivity of the fluid-saturated porous matrix, pi 
the fluid density evaluated at temperature T& and g’ 
represents the gravitational acceleration The charac- 
teristic velocity and pressure for this system are 

U’ = Kg’P’AT’lv’ and P’ = p;g’p’L’AT’ (4g, h) 

respectively. In the derivation of equations (l)-(3), a 
Boussinesq fluid of constant kinematic viscosity v’, 
volume expansion coefficient @’ and specific heat c’ is 
assumed. The thermal conductivity &,, and the per- 
meability k’ are also assumed constant. 

The boundary conditions for the geometry sketched 
in Fig. 1 are 

2=0 W = 0, T=l (5a) 

z=f -I U’ = 0, T= Ifz (5b) 

x=O,H, u=O, TX=0 (54 

y=0,H2 o=O, T=T,, T,,=KTb,, (5d) 

where (N,, H,) = (H;, E&)/L are the two horizontal 
aspect ratios describing the porous siab geometry. The 
ratio of block to saturated porous matrix thermal 
conductivities is K = ,I;/&, = O(I). The latter is 
assumed to be a material property of the system. Sub- 
script b has been introduced and will be used through- 
out the subsequent analysis to denote properties 
associated with the conducting biock. Thermal 
boundary condition (Sd) assumes the continuity of 
tem~raturc and heat flux at the slab-block interfaces. 

First we develop a linear stability analysis for equa- 
tions (l)-(3), subject to boundary conditions (5a)- 
(5d). Coupling between the slab and block tem- 
peratures, represented by thermal conditions (Sd), will 
be included later in conjunction with the describing 
system for conducting blocks. hollowing the pro- 
cedures developed in refs. [5, 61, the temperature dis- 
turbance 0 is defined by 

T= I-zz+d. (6) 

Since the problem is to be solved explicitly for a thin 
slab in the limit H, -+ 0, we define N, G E. The mag 
nitude of the global minimum Rayleigh number, for 
the configuration and boundary conditions employed, 
is found to be R = 0(&-I), a value intermediate 

between that for the insulated case, R = 0( 1) [ 11, and 
that for the perfectly conducting sidewall, R = O(E- “) 
[S]. Scaled values 

j = y/s, ri = sR (7) 

can be used to construct the exact temperature dis- 
turbance equation and boundary conditions from 
equations (l)-(3) and (5) 

a4(LXX -t L, f 20,,,) + E3_FiBXX 

+ E * (28,, + 2@+) + ~fit$~ f (&+ = 0 @a) 

z=o,-I 6’ = 0, = 0 (8b) 

x=O,H, 4, = LX = 0 (W 

y = 0,l ~~(0, + e,,) + al%+ + e,,, = 0. (8d) 

A separable solution containing the most unstable 
modes can be written as 

t?(x,p, z) = sin ~2 cos cIx f lj?; Ix, R, a). (9) 

The ordinary differential equation for the cross-slab 
eigenfunction and the boundary conditions cor- 
responding to (Sd) are given by 

f’“‘(~)+[&R-2&*(n*+cr2>]f”(~) 

-t[s4(~2+012)2-~3t12_Fi]_f~) = 0 (lOa) 

y = 0,l f”‘(~)+[&~-&2(n2+C(*)]f,~) = 0. 

(lob) 

The wave number E, determined by putting equation 
(9) into (8c), takes the form 

a=F m=0,1,2,... (11) 
I 

The two remaining boundary conditions necessary 
for solution of equation (lOa) are found from thermal 
continuity conditions (Sd). Therefore, it is necessary 
at this point to consider the heat conduction processes 
in the block. A linear stability analysis is to be carried 
out for the block lying to the left of the slab (cf. Fig, 
l), with the objective of finding the appropriate left 
surface boundary condition for f(_r?). The boundary 
condition on the opposite side can be obtained by 
symmetry arguments. 

2.2. Linear stability analysis for the block 
The dimensionless heat conduction equation and 

boundary conditions for the biock may be written as 

T~,.rx + Tbyy + T,,z, = 0 (12a) 

x=O,H, T,, = 0 (1%) 

z=o Tb = 1 (12c) 

s12 -1 r,= I+Z (12d) 

y=: .-..D Tb = I-zz (12e) 

y=o Ti, = T, TfY = (l,/K)T, (12f) 

where D = D’i L’ is the dimensionless block width. 



1334 M. WANG, D. R. KASSOY and P. D. WEIDMAN 

The conditions at y = 0 are taken from (5d). The 
describing system for the disturbance temperature & 
in the block is 

(Lx + 6tlvv + &rr = 0 (13a) 

x = 0, H, tlbx = 0 (13b) 

z=o,-1 &=O (13c) 

y=-D eb = 0 (134 
y=o 0, = e (134 

y=o eby = (1 isfle, (13f) 

where t& is defined by 

us = i -tz+Ze,. (14) 

The small aspect ratio E appearing in equation (13f) 
is due to the different y-scalings used in the block and 
in the slab. Again, a separated solution 

eb = sin nz cos c(xf&) (15) 

is used to find the cross-block functionf,(y) equation 
and boundary conditions 

E(Y) - (nZ+ a2)f,(y) = 0 (16a) 

fb(0) =f(O) (16b) 

fb(-D) = 0. 

The exact solution is found to be 

fb(Y) = sinh loy~~,*)‘,,] 
xsinh[(y+D)(~~+a~)‘~*] 

and 

j&,(O) =f(O)(n*+d~~)“* coth [D(z2+a2)“*]. 

f”‘(0)+[&~-&‘(n’+a*>]f(0) = 0 WC) 

f’(l)+&(n2+~*)“* coth[D(rr2+a2)“*]f(l) = 0 

(21d) 

f”‘(l)+@-s’(n*+a*)]f(l) = 0. (21e) 

Boundary conditions (21b) and (21d) specify heat 
exchange through the sidewalls of the slab. Note that 
the heat transfer rate is a function of several par- 
ameters; thermal conductivity ratio, slab width, and 
more importantly, the wave number, in contrast to 
the case studied by Weidman and Kassoy [6], where 
the wave number is absent in the heat transfer bound- 
ary conditions. The strong wave number dependence 
of the boundary heat flux forms a unique feature of 
the current problem. It arises from the x-direction 
heat conduction in the block which has not been con- 
sidered in earlier studies. The cellular convection 
mode in the slab affects the heat conduction character 
in the neighboring solid block, which in turn strongly 
influences heat transfer between the two environ- 
ments. 

The exact solution to equations (21) can be written 
in the form (cf. Kassoy and Cotte [S]) 

(164 f(Y) = sin 1j+ E cos lj+ F sinh yjj+G cash yj (22) 

where 

(17) A= l;[l+ (1-~)1;*]-c2(n2+a2)~* (23) 

(18) y= {-$[l-(l-~~2]+e2(n2+a2)~2. 

It follows from equations (9), (13f), (15) and (18) that 

fj(0) = &K(n2 +a’)“’ coth [D(n* +a*)“‘]f(O). 

(19) 

An application of the same analytical procedure to 
the block lying to the right of the slab gives the anti- 
symmetrical boundary condition 

fj(l) = -.zK(n2+a2)“’ coth [D(~‘+a~)“~]f(l). 

(20) 

Equations (19) and (20) depend only on f(p) and 
provide the remaining boundary conditions necessary 
to close the problem represented by equations (10). 

2.3. The general solution 
Equations (lo), (19) and (20) form a complete sys- 

tem describing the cross-slab eigenfunction. They are 
summarized here to facilitate the subsequent analysis 

f~~~(~)+[~~~2~~(~~+a~)]f”(~)+[~~(~~+a~)~ 

--E3a2&(j) = 0 (21a) 

f’(0)-sK(a2+a2)“2 coth [D(a2+a2)“*]f(0) = 0 

(21b) 

(24) 

In order to satisfy boundary conditions (21b)-(21e) 

E= 
D,&-DzB, 

AIBZ-AZB, ’ 
F= W’-9 

yo 

G= A,D,--A,D, (25aac) 
A,B,--A,B, 

PI@,-Az)+Dz(AI -B,)1C(y2+~ 

= (A,&-A,B,)&12+y2) (26) 

Al =1(12*-S)sind, A, = -1sinL+Ccos1 

(27a,b) 

B, =y(y2+S)sinhy, B, =ysinhy+Ccoshy 

(28a,b) 

D, = 1(12-S)(cosI-coshy) (29a) 

D2 = -CsinI-LcosL-(Csinh y+ycosh y)F 

(29b) 

C = &K(n2+a2)“’ coth [D(n2+a2)“2] (30) 

s = &k-E’(n’+U’). (31) 
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FIG, 2(a). The variation of the iowest order Rayleigh number FIG. 2(b). The variation of the first-order Rayleigh number 
appro~mation &, with the wave number a for several block appro~mation I?, with the wave number a for several block 

widths D. The conductivity ratio is K = i. widths D. The conductivity ratio is K = 1. 

Equation (26) is the exact eigenvalue equation for 
the Rayleigh number in terms of the parameters 
defined above. Since our main concern is the stability 
criterion for the onset of convection in the slab, equa- 
tion (26) is to be evaluated by a regular perturbation 
procedure in the thin slab limit E -+ 0. 

2.4. Asymptotic analysis 
When K = O( 1) and D = O(l), a distin~ished limit 

can be found for c( = 0( 1) and I? = O( 1). ff the scaled 
Rayleigh number is written as 

R = &+&I?, +.0(&2) (32) 

then a systematic expansion of equation (26) leads to 
an ordered set of equations in powers of E. Solutions 
of the first two may be written in the form 

R 
0 

= 2K(n2 +a2)3’z coth [D(n’ +tr2)*‘*] 

lx* (33) 

R 
i 

= 3 -K* ~0th~ [D(n’ +a’)] (n2 -tcr’)* 

3 a2 

(34) 

and are plotted in Figs. 2(a) and (b) for the special 
case of K = 1 and a set of selected values of D. The 
basic approximation 8, increases as the block width 
decreases as a result of increased heat exchange 
between the block and slab. This lowest order sta- 
bilization effect is reduced slightly by the afir term 
which, for a given e-value, decreases as D is reduced. 
One should also note that the basic Rayleigh number 
approximation increases linearly with K. Here again 
increased stabilization follows from enhancement of 
heat exchange between the slab and the environment. 
In contrast, there is a much weaker des~bi~~ng influ- 
ence from E& I as K is increased. Given a specific value 
of E, one can form neutral stability curves of second- 
order accuracy by a combination of results in equa- 
tions (32)-(34). 

An inspection of the above results indicates that 
expansion (32) is uniformly valid in the range 
U(E) c D c co. When D = U(s), however, the mag- 
nitude of the second term in expansion (32) becomes 
comparable with that of the first, and the limit-process 
expansion fails to be valid. 

The critical values of i and a are determined by 
using the condition d@du = 0. The expanded critical 
wave number 

ac = a,+.ca,,+O(~*) (35) 

is used in the derivative condition together with 
expansion (32). We find 

$ = ~~(Cr,)+&R:,(a~,a:,,)+o(s2) (36) 

where the asterisk denotes terms after expanding the 
wave number. An implicit relation is found for ak 

af l- . 
2D(7~~+a~)“~ 

smh [2D(x2 f af) “‘1 
= 2n2 (37) 

and I?f follows from equation (33) 

d* = 2K(zr2+a&)3’2coth [D(z~+c&)~~~] 
oc 

at 
* (38) 

Expressions for first-order terms u,, and & are 
rather lengthy and are listed in the Appendix for the 
interested reader’s reference. Values of c(&, rle, & 
and &, have been found numerically for different 
values of D in the special case when K = 1. They are 
plotted in Figs. 3(a) and (b). Some typical values are 
listed in Table 1 so that quantitative critical results for 
instability can be obtained. It is observed that the 
influence of block width D on these critical values is 
confined to a narrow region near zero block thickness. 
As soon as D reaches approximately 0.5, these values 
do not differ appreciably from those corresponding 
to the asymptotic limit D + m. 
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FG 3(a). The variations of the lowest order critical values 
of & and G(~ with the block width D. The asymptotes for 
t) -+ co are represented by dashed lines. The ~nductivity 

ratio&K= I. 
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FIG. 3(b). The variations of the first-order critical values of 
& and GL~, with the block width D. The asymptotes for D + 
fo are represented by dashed lines. The ~~ductivjty ratio is 

R= 1. 

Table 1. Critical vames (K -- 1) 

0.02 16.56 107.49 -279.84 
0.04 II.77 57.73 - 100.66 
0.06 9.67 41.31 - 55.72 
0.0% 8.43 33.23 - 36.80 
0.10 7.61 28.47 - 26.77 
0.14 6.56 23.25 - 16.73 
0.20 5.68 19.68 - 10.38 
0.30 4.99 17.45 -6.41 
0.50 4.54 16.46 -4.38 
1.00 4.44 16.32 -4.03 
co 4.44 16.32 -4.03 

-2256.29 
-492.81 
- 182.54 

- 19.34 
- 33.97 

2.76 
19.89 
27.13 
29.37 
29.61 
29.61 

20 

12 
0 1 2 3 

f+l 

FIG. 4. The variation of l?, with H, for several values of D 
when K = 1. The preferred mode numbers M are indicated. 

Onset of motion in the slab will occur at the critical 
conditions computed above as long&s the wave fitting 
condition (11) is met. In general, however, for a given 
slab aspect ratio Hi, since only an integer number of 
modes are allowed, motion will occur according to 
the neutral stability criteria in equations (32~(34~. 
When the value of H, is changed continuously, new 
modes appear or existing modes vanish to fit the sys- 
tem with the lowest Rayleigh number. The transition 
from I)Z tom+ 1 modes occurs when &cc,) = &cc,, ,). 

To a first approximation, it follows from equations 
(33) and { 11) that 

(n2 +a;]312 coth [D(n” -+-~t;)‘~~] - z 
% 

and 

= [HB+ (m+ 1)*]3+7z2 tanh 7rD 
i [ m~:~“zl 

1 + H2 

where Hftr denotes the slab aspect ratio at which mode 
transition occurs. 

In Fig. 4, the neutral stability curves and the tran- 
sition aspect ratio are given for selected values of I). 
For a specified slab geometry, decreasing the block 
width tends to increase the modal wave num~r a ; 
that is, the convection pattern is composed of a greater 
number of necessarily thinner cells. 

2.5. The special case of” large D: application to geo- 
thermal systems 

The foregoing analysis can be greatly simplified 
if we consider the case where the block width is 

comparable to or larger than its depth because 
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coth[D(n2+cr2)‘/2] = 1 as D+ co. In fact, when 
D = 0.5 and u, N 4.44 as calculated above, then 
coth [D(n'+d)"*] II 1.01. This result shows that 
when D is sufficiently large, there is practically no 
distinction between finite block width and infinite 
block width as far as the stability properties within 
the thin slab are concerned. When coth [D(n* + c?)"~] 
is replaced by 1 in equations (21b) and (21d), the 
system for the slab eigenfunction becomes inde- 
pendent of D. In this case, the desired critical stability 
results for the onset of convection in the porous slab 
can be found analytically as explicit functions of sys- 
tem parameters. These limiting results are given 
below. 

(a) Neutral stability curve : 

ff= 
2K(nZ+d)3'2 

u2 

+3-K' (n2+cr2)* 

3 a2 
E+O(E2)* 

(41) 

(b) Critical Rayleigh number : 

& = ff& +&E+ O(E’) = 3J3rrK 

+3x2(3-K') 

2 
E+O(E~). (42) 

(c) Critical wave number : 

a, = a,+cc,&+O(2) = J2x 

+ (K2-33)~~ 

2J6K 
E+O(&*). (43) 

(d) Transitional slab aspect ratio : 

H 
I,r 

= (m+l)%YP-m+r+1)4’3 “2. 

(m + 1)4’3 -m4’3 1 (44) 

For comparison, these D -+ co results have been 
plotted in Figs. 24 for K = 1 together with results 
obtained for various finite values of D. It is seen clearly 
from Figs. 3(a) and (b) that departures in critical 
values from the infinite block width case become insig- 
nificant when D > 0.5. 

An important application of this study is to the heat 
and mass transport in geothermal systems where ver- 
tical faults of permeable material are known to be 
present [8]. The establishment of convection in these 
faults can increase the local heat transport by orders 
of magnitude, in comparison to pure conduction [7]. 
Hence the conditions for the occurrence of convection 
are of considerable interest. Our mathematical model 
is expected to provide a good prediction for those 
criticality results because it relies on fewer approxi- 
mations than used in earlier studies. Most import- 
antly, we have developed a three-dimensional model 
of convection and accounted for the effect of rock 
heat conduction induced by thermal disturbances in 
the water-saturated material. In geothermal systems 
associated with fault zones the assumption of large 
width to height ratio is valid, and equations (42) and 

(43) should provide a realistic estimation of critical 
values. 

A sample calculation is carried out for a narrow 
fault zone embedded between rock masses of much 
larger lateral extent. Both sandstone and limestone, 
with markedly different thermal conductivities, are 
considered. As a rough estimate, the same matrix 
thermal conductivity is used in both cases ; i, = 
1.2 W m- ’ “C- ’ [S]. The critical Rayleigh number R, 
and critical non-dimensional wavelength defined 
by I, = 2rr/e(, can be computed. Table 2 lists values 
for several dimensionless fault widths. The stabilizing 
effect of increasing thermal conductivity ratio K or 
decreasing dimensionless fault width E, both implying 
increasing heat exchange per unit mass of fluid with 
the surrounding rock, should be observed. Finally, 
one may note that R, always exceeds the minimum 
classical value 4n2 which is found only when there is 
no heat transfer to the bounding solid rock. 

3. DISCUSSION 

The preceding asymptotic calculations show that 
when the conductivity ratio K = O(l), then the Ray- 
leigh number R = O(E-') for onset of motion in the 
physical system described in Fig. 1. This result, when 
compared to that for the fully insulated case where 
R = O(1) (e.g. see Zebib and Kassoy [2]), dem- 
onstrates that sidewall heat transfer is a stabilizing 
influence. The stabilizing effect for the embedded slab 
is much weaker than that found when a heat transfer 
condition is applied directly to the sidewall. For the 
latter case [S], the onset Rayleigh number R = O(E-'). 

The convection mode, on the other hand, does not 
exhibit a horizontal wave number intermediate 
between those found in refs. [2, 51. Rather one finds 
O(1) wave number cells similar to those in the fully- 
insulated case. This surprising result can be attributed 
to the diffusion of heat in the solid block along the 
plane of the interface between the block and the slab 
which tends to smooth out thermal gradients associ- 
ated with large wave number patterns. In other words, 
a narrow cell with relatively large horizontal tem- 
perature gradients along the slab, is not compatible 
with the conduction process in the block when 
D = O(1). In contrast, when D = O(E), so that the 
thermal boundary condition is applied close to the 
interface, as will be shown, the convection mode con- 
sists of narrow, three-dimensional cells. 

In order to obtain a thorough understanding of 
the predicted O(1) wave number convection cell we 
examine in detail its structural properties in the cross- 
slab direction. The eigenfunction, obtained directly 
from equations (21), has the form 

f(y)= I+ {K(n2+cr2)"2 coth [D(x2 

+a')"2]}j(l-_R~+O(~2). (45a) 

Equation (45a) can be evaluated at the critical values, 
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Table 2. Critical values for onset of convection in faults 

Environmental 
material 

Thermal 
conductivity 

Iz (W m-l ‘C-I) 
(adapted from 

ref. [9]) 

(Fault width) Critical Critical 
(Height) Rayleigh number wavelength 

F: R, 1, 

R, = 1.8 0.1 2.6 x IO2 I .45 
Sandstone (XI= 1.5) 0.01 2.5 x IO3 1.42 

0.001 2.4 x lo4 1.41 

Lb = 1.2 0.1 
(K = 1 .O) 0.01 

1.9x lo2 
1.7x lo1 

1.55 
I .43 

equations (37) and (38), to fmd the critical eigen- 
function 

For the case of large block width D, one finds from 
equations (42) and (43) 

S=(j) = 1 +J3nKg(l -F)&JrO(EZ). (45c) 

The critical eigenfunction exhibits a variation with jj 
in the O(E) term. Small as it is in the absolute sense, 
the variation is of the magnitude of the slab width. 
This implies that temperature changes per unit dis- 
tance in a convection cell are of the same order of 
magnitude in all three directions. Clearly, it is inap- 
propriate to characterize these unstable modes as two- 
dimensional rolls, as in the case of insulated sidewalls. 
Rather we choose to call them tall, large, weakly three- 
dimensional convection cells. 

Also of interest is the cross-block function f&y), 
since it reveals the nature of the temperature field in 
the blocks. In the block lying to the left of the slab, 
this function is given by equations (17) and (45) 

with 

f (y) = sinh [(y+D)(n’+a*)“‘“] 
b sinh [D(s*+t~~)‘~~] (46a) 

&(y) + exp [y(n2+~‘)“‘] as D -+ co. Wb) 

Since &, = sin ?LZ cos ax&(y), equation (46b) shows 
an exponential decay of temperature disturbance in 
the ~mi-infinite conducting medium along the nega- 
tive y-axis. It follows that the convection-induced 
thermal perturbations can only penetrate a short dis- 
tance through the block. For example, if we define the 
penetration depth Y, to be the distance over which a 
thermal disturbance travels before it decays to 5% of 
its original value, then Y, N 0.55 when K = 1 and 
a = a,. Beyond this distance the temperature field is 
represented basically by a linear temperature increase 
with depth due to conduction processes in the block. 
As a result, positioning the linear temperature dis- 
tribution at any y < - Y,, has little effect on the flow 
characteristics in the porous slab. This explains the 
extremely weak dependence of critical parameters on 
D for D >, Y,, as exhibited in Figs. 3(a) and (b). 

Figures 5(a)-(c) display isotherms at the onset of 
convection in the porous slab and one of its neigh- 
boring blocks at the vertical level z = -l/2, for the 
specialcaseofD-+co,s=O.l,whenK=0.5,1.0and 
2.0. In each of the three figures, the slab length H, is 
chosen to be equal to one critical wavelength for the 
particular K-value so that the convection pattern cor- 
responds to global critical conditions. The number on 
each isotherm indicates the disturbance temperature 
given by equations (9) and (15). A normalized value 
of minus one has been assigned to the isotherm tan- 
gent to the interface between the slab and block at the 
mid-point of the slab. Other isotherm values measure 
the disturbance relative to this normalized isotherm. 
In the middle portion of the slab, the fluid descends 
in a three-dimensional convection cell with negative 
disturbance temperature. At the same time the warmer 
fluid at the bottom flows upwards near the endwalls, 
causing a positive temperature disturbance. This basic 
convection pattern will repeat if the slab length is 
increased by integer multipies. If the slab length differs 
slightly from an integer number of critical wave- 
lengths, the number of cells m in the slab remains the 
same as long as H,,,(m) < H, < H,,,(m+ I). How- 
ever, the isotherm pattern in each cell will be slightly 
stretched or contracted in the x-direction. On the 
other hand, large changes in the slab length will cause 
the number of cells to be changed each time a tran- 
sition point in the wave fitting condition (44) is ex- 
ceeded. 

The non-dimensional temperatures on isotherms 
are given by equations (6) and (14). It should be noted 
that the actual amplitude of the disturbances cannot 
be obtained from linear theory. Rather, one can ascer- 
tain only relative variations between one part of the 
field and another. 

The influence of the thermal conductivity ratio K 
on the horizontal temperature field in the slabblock 
system can be understood by examining Figs. 5(a)- 
(c). Comparing the three figures, one concludes that 
decreasing K, and hence reducing the sidewall heat 
transfer, results in wider convection cells. In addition 
one may note that the temperature gradient across the 
slab is less pronounced for small values of K, implying 
that the Sow pattern is less strongly three-dimen- 
sional. This result agrees with that reported in ref. [6] 
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FIG. 5. Isotherm patterns (constant &values) in the horizontal plane z = -0.5 for D -+ 60 and E = 0.1. 

Numerical values are relative to a normalized value of unity on the slab-block interface : Case (a) K = 0.5 ; 
Case (b) K = 1.0; Case (c) K =; 2.0. 

and is reasonable since in the limiting case of insulated 
sidewalls, K = 0, one obtains purely two-dimensional 
convection cells. 

It may be noted in Fig. 5 that the penetration dis- 
tance of a given thermal disturbance in the block is 
largest when K is a minimum, which corresponds to 
a minimum wave number 01. This result arises from 
equation (46b), which implies that the non-dimen- 
sional temperature decay length is proportional to 
l/(n”+a2)“*. The implicit dependence of the pen- 
etration depth on K through wave number a becomes 
weaker as the slab aspect ratio E is decreased, due to 
the U(E) dependence of the cr, on K(c.f. equation (43)). 

The continuous isotherm lines at the slab sidewall 
represent continuity in temperature distribution 
across the slab-block interface. The slopes of these 
isotherms, on the other hand, are not usually con- 
tinuous at the interface. In fact, the slope of an iso- 
therm is given by 

(47) 

At the slab-block interface S, = &, and 8, = Kf?,, 
Thus 

R =E w@2 
I E2 ~*+2(K/~)+(Kl~)’ 

We conclude from equation (48), that unless K = 1, 
there is a jump in slope of the isotherms across the 
slabblock interface, as exhibited in Figs. S(a) and 
(c) ; the ex~ption~ case of continuous gradient of the 
isotherm contours at the slab-block interface is given 
in Fig. 5(b). 

Finally, we consider the system in Fig. 1 when the 
block width is comparable to that of the slab. The 
solutions described above are not uniformly valid 
when D = O(E). Asymptotic results for this case, using 
fi = DUE indicate that the scalings R = E’R and 
E = E’% identical to those found in refs, [S, 61 are 
required. Then 

where 

R = &-l-&R, +0(&Z) (49) 

RAi2 tan (R$‘/2) = K/D (50) 
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48,(K/b)P 

‘+ 3[&+2(K/@+(K/6)=] ’ (51) 

The above results are similar to equations (16), (18) 
and (19) in ref. [6], where the scaled Biot number B 
plays the role of K/b. The underlying reason for this 
similarity is that for D = O(E), block conduction in 
the y-direction dominates that in the x-direction. The 
remaining effect of the small x-conduction in the thin 
block is accounted for by the second term in the curly 
bracket in equation (5 l), which does not appear in the 
results of ref. [6]. As b--t 0 the results in ref. [5] 
are obtained. This demonstrates that when the block 
thickness is like that of the slab, fully three-dimen- 
sional high wave number solutions in the conducting 
block can be sustained. 

4. CONCLUSION 

This paper describes a study of the onset of natural 
convection in a finite, thin, vertically oriented satu- 
rated porous slab sandwiched between two imper- 
meable conducting blocks. Several relevant par- 
ameters involved in the analyses are: E = slab 
width/height, D = block width/height, and K = 
block thermal conductivity/saturated porous matrix 
thermal conductivity. Our study shows that 
the presence of two contiguous conducting blocks 
changes the stability properties in the porous slab 
dramatically, due to the thermal interactions in the 
composite system. When K = O(l), D >> O(E), the 
critical Rayleigh number R, - 0(1/a). The cor- 
responding convection mode consists of weakly three- 
dimensional square cells with critical wavelength 
I, - O(1). The sidewall heat exchange with the con- 
ducting blocks, which can be enhanced by either 
increasing K or decreasing D, continues to be a 
strongly stabilizing effect. When D = O(E), tall, thin, 
three-dimensional finger-like cells, 1, - O(E”‘), are 
formed at a much higher Rayleigh number, 
& - O(1 l&2). 
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APPENDIX 

First-order terms for expanded critical Rayleigh number 
and critical wave number are listed below 

I?:, =7 2Ka’c [A(A=-3311') coth (DA) 
a, 

-Da& csch’ (DA)] + 
3 -K* coth’ (DA) A4 

3 z (Al) 

2A2(A2-2n2)[3-K’coth’(DA)] 

3(A2 --s~)~‘~ 

2K2DA’cosh (DA) 

+ 3(A - n’) ‘I2 sinh’ 

3n2(n2+A2) 

(DA) A(A2 -x2)2 

+ 4D2A coth (2DA) 
smh (2DA) 1 coth (DA) 

+ 
D(5n2-2A2) 

AZ--?? + sin;;;A,l csch2 (DA)} (‘42) 

where 

A = (n’+~&)~‘*. (A3) 
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CONVECTION DANS UNE COUCHE VERTICALE DE MATERIAU POREUX SATURE 
ENTRE DEUX BLOCS CONDUCTEURS IMPERMEABLES 

R&sum&-On considtre la convection naturelle dans une couche verticale de mat&au poreux. Cette couche 
est se&e entre deux blocs conducteurs impermbables de dimension finie. Une difference de temperature 
est imposbe verticalement entre les surfaces horizontales superieure et inferieure de la couche et des blocs 
et une distribution lindaire de temperature est imposee sur les faces verticales externes des blocs. Cette 
configuration mod&e la convection dans une zone rocheuse fracturee et saturee. Une analyse de stabilite 
lintaire est developpee a la fois pour la convection dans la couche et la conduction dans les blocs. L’objectif 
de l’ttude est d’obtenir le nombre de Rayleigh critique et le mode de convection dans la couche. Lorsque 
les Bpaisseurs du bloc et de la couche sont petites en comparaison des deux autres dimensions, on trouve 
ungrandnombredepetitescellulesserrtestridimensionnelles. Au contraire, unblocderelativementgrande 
epaisseur favorise la formation de cellules a grande longueur d’onde, faiblement tridimensionnelle dans la 
couche a un nombre de Rayleigh plus faible. La difference est relite au caractere de la distribution de 

temperature dans le bloc solide. 

DAS EINSETZEN DER KONVEKTION IN EINEM SENKRECHTEN SPALT AUS EINEM 
GESATTIGTEN POROSEN MEDIUM ZWISCHEN ZWEI UNDURCHLASSIGEN, 

WARMELEITENDEN KORPERN 

Zusammenfassung-Das Einsetzen der Konvektion in einem senkrechten, endlich diinnen Spalt, der 
mit gesattigtem, poriisen Material gefiillt ist, wird betrachtet. Der Spalt ist zwischen zwei endlichen, 
undurchllssigen, wlrmeleitenden Korpern eingebettet. Eine Temperaturdifferenz wird zwischen der hori- 
zontalen oberen und unteren Begrenzungsflache der Anordnung aufgepragt, ebenso eine linear verlaufende 
Temperaturverteilung auf den senkrechten Seitenflachen. Mit dieser Anordnung wird die Konvektion in 
Gerollschichten modelliert, wie sie in Verwerfungen auftreten. Eine lineare Stabilitltsanalyse wird sowohl 
fur die Konvektion im Spalt als such fur die Warmeleitung in den Kiirpern entwickelt. Ziel der Unter- 
suchung ist, die kritische Rayleigh-Zahl und die Art der Konvektion im Spalt zu bestimmen. Wenn Spalt- 
und Festkiirperdicke klein sind im Verhlltnis zu den anderen beiden Abmessungen, beobachtet man eine 
grol3e Zahl diinner, langer, dreidimensionaler Zellen. Dagegen fiihrt ein breiter Festkiirper zu nur gering 
ausgeprlgten dreidimensionalen Zellen gri%erer Wellenllnge bei vie1 kleineren Rayleigh-Zahlen. Der 

Unterschied hIngt von der Art der Temperaturverteilung im Festklirper ab. 

B03HHKHOBEHkIE KOHBEKL(MM B BEF’TkIKAJIbHOfl IIJIACTMHE HACbIuEHHOI-0 
I-IOPMCTOrO MATEPMAJIA MEXAY HBYMR HEl-IPOHMHAEMbIMM 

TEl-IJIOl-IPOBO~~II&IMH SJIOKAMM 

AHHOTaUHII-PaCCMaTpIIaaeTCII B03HHKHOBeHWe eCTeCTBeIIHOii KOHBeKIIWII B TOHKOii BepTIIKaJIbHOii 

nOpIICTOfi IIJIaCTIIHe, nOMemeHHOii MeNly nByMa HenpOHHuaeMbIMII npOBOJIRmIIMH 6nOKaMH KOHeS- 

HOrO pa3Mepa. CymeCTByeT nepenaLITeMnepaTypb1 n0 BepTIIKaJIH MelKny BepXHeii II HHmHeg rOpHJOH- 

TaJIbHbIMH nOBepXHOCTRMII IL3aCTIIHbI H 6JIOKOa,a Ha HapyKCHbIX BepTIIKaJIbHbIX nOBepXHOCTaX 6JIOKOB 

3anaeTca nmieiitioe pacnpenenetiwe rehmeparypbt. Tatcar xoii~nrypauwn acnonbsyercn AJI~ Monennpo- 
BaHHR KOHBeKuIIII B HaCbImeHHOii,3anOJIHeHHOii pa3npo6neHHoii nOpOnOfi 3OHe,nOllO6HOii 30He c6po- 

COO6pa30BaHIIa. &HeiiHbIi? ariann3 yCTOt+IHBOCTII npOBeAeH &WI KOHBeKIIAH B n,IaCTIIHe II 

TennonpoBonHocTU B 6noxe. Llenb nccne~oaamin-onpenennrb xperuvecxoe qncno P3nea n ~KHM 
KoHBeKwH B nnacTHHe. B cnyKae,Korna nonepeuHbIepa3MepbI 6noKau nnacTnHblManbl nocpaBHemno 

C LIByMa Llpj’rHMH pa3MepaMki, 06HapyreHo 6onbmoe YnCJtO BbICOKBX y3KHX TpeXMepHbIX ImeeK. B 
OTJIH'IWe OT abIIIIeyKa3aHHOrOCJIyraa 6nox C OTHOCWTeJIbHO 6onbmofi mHpHHOfiCnOC06CTByeT o6paso- 
BPHIIIO a n~aCTnHeC~a60BbIpa~eHHbIXT~XMepHbIXR~~KC6o~bmoii~nHO~ BOJIHbltIpH 3HaWITe,IbHO 

6onee HW~KAX 3HaqeHmIx sucna Psnea. 3~0 pasnevae caa3aHo c pacnpenenemieh4 rehfneparypbt B 

TBepAOM 6noxe. 


